PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 16

Total Marks: 45

Max. Time: 54 min.

Topic: Ionic Equilibrium

Type of Questions M.M., Min. Single choice Objective ('-1' negative marking) Q.1 to Q.3 (3 marks, 3 min.) [9, 9] Subjective Questions ('-1' negative marking) Q.4 to Q.12 (4 marks, 5 min.) [36, 45]

- (a) pH of a strong acid is 3. On dilution its pH changes to 4. How many times the dilution takes place? (A) 10 times (B) 100 times (C) 1000 times (D) 10000 times
 - (b) Calculate the change in pH when a 0.1 M solution of CH₃COOH in water at 25°C is diluted to a final concentration of 0.01 M. $[K_a = 1.85 \times 10^{-5}]$

(A) + 0.5

(B) + 0.4

(C) + 0.7

(D) + 0.6

At 25°C, the dissociation constants of CH2COOH and NH2OH in an aqueous solution are almost the 2. same. The pH of a solution of 0.01 N CH₂COOH is 4 at 25°C. The pH of 0.01 N NH₂OH solution at the same temperature would be:

(A) 4

(C) 10

(D) 11

Which of the following increases with dilution at a given temperature? 3.

(A) pH of 10⁻³M acetic acid solution

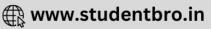
(B) pH of 10⁻³ M aniline solution

(C) degree of dissociation of 10⁻³M acetic acid

- (D) degree of dissociation of 10⁻³M aniline
- 4. Does the pH of solution increases, decreases or remain same when you

(a) add NH,CI(s) to 100 ml of 0.1 M NH,?

- (b) add sodium acetate(s) to 50 ml of 0.015 M acetic acid?
- (c) add NaCl(s) to 25 ml of 0.1 M NaOH?
- 5. When 0.100 mol of NH, is dissolved in sufficient water to make 1.00 L of solution, the solution is found to have a hydroxide ion concentration of $1.2 \times 10^{-3} M$.
 - (a) What is the pH of the solution?
 - (b) What will be the pH of the solution after 0.100 mol of NaOH is added to it?
 - (c) Calculate K, for ammonia.
 - (d) How will NaOH added to the solution affect the extent of dissociation of ammonia?
- (a) How much water must be added to 300 mL of a 0.2 M solution of CH₂COOH for the degree of dissociation 6. of the acid to double ? (Assume K₂ of acetic acid is of order of 10⁻⁵ M)
 - (b) What is the pH of a 1M solution of acetic acid? To what volume must one litre of this solution be diluted so that the pH of the resulting solution will be twice the original value? Given: K₂ = 2 × 10⁻⁵.
- 7. Saccharin ($K_a = 2 \times 10^{-12}$) is a weak acid represented by formula HSac. A 4 × 10⁻⁴ mole amount of saccharin is dissolved in 200 cm3 solution of pH 3. Assuming no change in volume, calculate the concentration of Sac ions in the resulting solution at equilibrium.
- What is the pH of 0.01 M H_2S solution ? $K_{a1} = 9 \times 10^{-8}$, $K_{a2} = 1.2 \times 10^{-13}$. 8.
- Find the concentration of (i) hydrogen oxalate ion $[HC_2O_4^-]$ and (ii) oxalate ion $[C_2O_4^{2-}]$ in a solution 1.00 M 9. with respect to $H_2C_2O_4$. $K_1 = 3.6 \times 10^{-3}$, $K_2 = 6.4 \times 10^{-7}$.
- Calculate (i) [H $^+$], (ii) [H $_2$ PO $_4$ $^-$], (iii) [HPO $_4$ 2 -], and (iv) [PO $_4$ 3 -] in a 0.15 M solution of phosphoric acid, H $_3$ PO $_4$. 10. $K_1 = 7.5 \times 10^{-3}, K_2 = 6.\tilde{2} \times 10^{-8}, K_3 = 3.6 \times 10^{-13}.$
- 11. H_2SO_3 , sulfurous acid, is a weak acid capable of providing two H⁺ ions. $K_{a1} = 0.02$, $K_{a2} = 6 \times 10^{-6}$. (i) What is pH of a 0.4 M solution of H₂SO₃?
 - (ii) What is the equilibrium concentration of the sulfite ion, SO₃²⁻, in the 0.4 M solution of H₂SO₃?
- 12. Hydrazine, N₂H₄, can interact with water in two stages.


 $N_2H_4(aq) + H_2O(1) \rightleftharpoons N_2H_5^+(aq) + OH^-(aq)$

 $K_{b1} = 8.1 \times 10^{-7}$ $K_{b2}^{5} = 9 \times 10^{-16}$

 $N_{2}^{-}H_{5}^{-+}$ (aq) + $H_{2}O$ (I) $\longrightarrow N_{2}^{-}H_{6}^{-2+}$ (aq) + OH^{-} (aq) (i) What are the concentrations of OH-, $N_2H_5^+$ and $N_2H_6^{2+}$ in a 0.010 M aqueous solution of hydrazine ?

(ii) What is pOH of the 0.010 M solution of hydrazine?

Answer Kev

DPP No. #16

- 1. (a)
- (A)
- (b)

2.

- (C)
- 3. (A,C,D)
- 4. (a) pOH will increase so pH decrease (b) [H+] will decrease so pH increase (c) No change (remains same).
- (a) pH = 11.085.
- (b) pH = 13
- (c) $K_b = 1.44 \times 10^{-5}$ (d) will suppress it.

- 6. (a) 900 mL.
- **(b)** 2.37, $V = 2.5 \times 10^4$ litres.

(A)

7. $[Sac^{-}] = 4 \times 10^{-12} M$

- 8. 4.52.
- - $[HC_{2}O_{4}^{-}] = 0.06 \text{ M}, (ii) [C_{2}O_{4}^{2-}] = 6.4 \times 10^{-7} \text{ M}.$
- (i) $[H^+] = 0.03 \text{ M}$; (ii) $[H_2PO_4^-] = 0.03 \text{ M}$; (iii) $[HPO_4^{2-}] = 6.2 \times 10^{-8}$, (iv) $[PO_4^{3-}] = 7.44 \times 10^{-19}$ 10.
- (i) pH = 1.1; (ii) $[SO_3^{2-}] = K_{a2} = 6 \times 10^{-6} M.$ 11.
- 12. (i) $[OH^{-}] = 9 \times 10^{-5} \text{ M}, [N_{o}H_{o}^{+}] = 9 \times 10^{-5}$; (ii) $pOH = 4.04, [N_{o}H_{o}^{2+}] = 9 \times 10^{-16}$.

ints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #16

- 1.
- $pH = \frac{1}{2} \{pK_a \log C\}$
 - $\Delta(pH) = \frac{1}{2} [\log C_i \log C_j] = \frac{1}{2} \{-1 + 2\} = 0.5$ [pH will increase].
- 3. Degree of dissocation of WA & WB will increase.

[H⁺] in WA and [OH⁻] in WB will decrease so pH of WA and pOH of WB will increase.

- 6.
- Initially degree of dissociation $\alpha = \sqrt{\frac{K_a}{C}}$ (a)

$$\alpha = \sqrt{\frac{\kappa_a}{C}}$$

Now degree of dissociation, $\alpha_1 = 2\alpha = \sqrt{\frac{4K_a}{C}} = \sqrt{\frac{K_a}{C}}$

- $C_1 = \frac{C}{4}$ \Rightarrow Hence we have

$$300 \times 0.2 = V_f \times \frac{0.2}{4}$$
 so $V_f = 1200 \text{ mI}$

Hence water added = 1200 - 300 = 900 m

(b)
$$pH = \frac{1}{2} \{ pK_a - \log C \} = \frac{1}{2} \{ 5 - \log 2 - \log 1 \} = \frac{4.7}{2} = 2.35.$$

Now on dilution pH will increase degree of dissociation a will also increase so we might not be able to use the approximate formula hence

where a =
$$\sqrt{\frac{K_a}{C}} = \sqrt{K_a}$$

 $K_a = \frac{C_1 \alpha_1^2}{(1-\alpha_1)} = \frac{C\alpha^2}{(1-\alpha)}$...(1)

Also we must have pH, = 2pH

so
$$-\log [H^+]_1 = -2 \log [H^+]_1$$

$$\Rightarrow -\log \left[C_1 \alpha_1\right] = -2 \log \left(C\alpha\right) = -\log \alpha^2$$

so
$$C_*\alpha_* = \alpha^2$$
 ...(2)

From (1) equation
$$K_a = \frac{C_1 \alpha_1^2}{(1 - \alpha_1)} = \frac{(C_1 \alpha_1) \alpha_1}{(1 - \alpha_1)} = \frac{\alpha^2 - \alpha_1}{(1 - \alpha_1)} = \frac{K_a \cdot \alpha_1}{(1 - \alpha_1)}$$

Hence
$$\alpha_1 = \frac{1}{2}$$

so we get
$$2 \times 10^{-5} = \frac{C_1 \times 1/4}{1/2} = \frac{C_1}{2}$$

Now
$$M_1 V_1 = M_2 V_2$$
 gives \Rightarrow $1 \times 1 = 4 \times 10^{-5} V_1$
so $V_1 = 2.5 \times 10^4$ litre

7. Calculation of [H+] and [HSac] at start

[HSac] =
$$\frac{4 \times 10^{-4} \times 1000}{200}$$
 = 0.002 M

The dissociation of HSac is as below

$$\therefore K_a = \frac{[H^+][Sac^-]}{[HSac]} = \frac{(0.01+x)x}{0.002-x} = 2 \times 10^{-12}$$

$$x = 4 \times 10^{-12} \text{ M}$$

$$[Sac^-]_{equil} = 4 \times 10^{-12} \text{ M}.$$

8.
$$K_{a_1} >> K_{a_2}$$

$$[H^+] = [HS^-] = \sqrt{CK_{a_1}} = \sqrt{0.01 \times 9 \times 10^{-8}}$$

$$[H^+] = 3 \times 10^{-5}.$$

$$pH = 4.52.$$

